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1. Introduction

ODERN SCIENCE has come to the
firm conclusion that the material

world is composed of matter, and all mat-
ter is constantly undergoing change in the
state of existence. This fact is by no means
self evident. Indeed, people in the olden
times believed that there are things that
change, and things that do not. The moon,
the sun, stars in the sky, and mighty moun-
tains on earth do not seem to change at all.
True, the moon changes through phases —
but that also is precisely repetitive, and we
do not see any change in the cyclic repe-
tition of the phases. The biological enti-
ties — the deer, the lion and the monkey
— do change within one animal’s lifetime,
but the character of the species itself did
not seem to change. One’s grandfather’s
grandfather took the same kind of cows to
graze, the character of the cow did not seem
to change.

Slowly, with the progress of scientific
investigation following Renaissance, evi-
dences accumulated indicating that what
we believed as unchangeable also do
change. Fossil records indicated that
species change, geological investigations re-
vealed that mountains form and evolve,
astronomical investigations revealed that
changes also do occur in stars, nebulas and
galaxies.

Philosophers then set about the task
of integrating the everchanging nature of
the material world into a system of scien-
tific philosophy. The first attempt came

from the German philosopher Hegel, who
showed that though most of the time mate-
rial entities undergo slow and quantitative
changes, there are times when the changes
become drastic and qualitative — trans-
forming one state of existence into another.
The transformation of water into ice, of a
seed into a plant, etc., are commonplace
examples of such qualitative change of one
state of existence into another.

When Marx and Engels tried to cre-
ate a scientific philosophy by generalizing
upon and integrating the knowledge earned
through particular branches of science, the
general observation of the everchanging
character of matter and its progress from
quantitative change to qualitative change,
and vice versa, became integrated into the
newly emerging scientific philosophy — di-
alectical materialism.

Since then, various branches of science
have investigated the process of change
of particular material entities or systems.
Since matter exists in motion, the changes
can be of two broad categories: (1) changes
in the state of the matter, and (2) changes
in the state of motion. Both types are char-
acterized by quantitative as well as quali-
tative changes. Studies on the qualitative
changes in the state of matter have resulted
into a field of knowledge which in scien-
tific perlance is known as “phase transition
and critical phenomena.” And qualitative
changes in the state of motion is studied in
a field known as “bifurcation theory.”

Till about thirty years back, one could
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explain qualitative changes in motion only
in terms of philosophical arguments. But
since then a sound mathematical theory
has been developed and enough empirical
observations have accumulated to back up
the philosophical proposition with hard sci-
ence. In the present article we shall dis-
cuss what is now known to be the process
of qualitative change in the state of motion.
For that, we would have to delve into a bit
of mathematics.

2. States of motion

Scientists have devised a very intuitively
appealing and pictorial way of representing
motion. Here, the word “motion” is used
in a general sense, meaning any kind of
change in the dynamical state of the sys-
tem. The change of magnetic field in an
electromagnet (which itself may not move)
is also treated as a change of dynamical
state. Likewise, the voltage of an electrical
circuit also represents a dynamical state,
though the components of the circuit itself
may be static.

In general, the dynamical state of a sys-
tem is represented by a few variables.
These are a few quantities that suffice to
define the dynamical status of a system
uniquely. For example, for a pendulum
moving in a plane, the anglular position
of the bob (

�
) and its angular velocity (

��
)

are the two quantities that uniquely repre-
sent the dynamical status of the pendulum.
When you throw a ball in air, the position
of the ball (given by the � , � , and � coor-
dinates) and its velocity (given by the time
derivatives of these coordinates) uniquely
define the dynamical state of a system. As
the ball moves, these quantities vary and so
these are called “variables.” In any dynam-
ical system, the minimum number of vari-
ables that uniquely define the state of the
system are called the “state variables.”

To pictorially represent the dynamics of
a system, scientists imagine a space with
the state variables as coordinates. This is
called the “state space” or “phase space.”
Thus, to represent the motion of the pen-
dulum’s bob, one would draw a graph with�

and
��

as the coordinates. The state of
the system at any moment of time is repre-
sented by a point in this state space. Motion
is then represented by the change of posi-
tion of this state-point. Thus, when a sys-
tem undergoes dynamical change — quan-
titative or qualitative — it is then repre-
sented by the trajectory or orbit of the state
point in the state space.

How does one obtain this trajectory? An-
swering this question, exactly, was the
main contribution of Isaac Newton. He
showed that we can calculate the trajectory
if we know how the states change. That is,
if we obtain a set of mathematical relation-
ships in the form
�
�
���	�

�
� � a function of � and �

�
�
�
���

�
� � another function of � and �

then we can calculate the trajectory starting
from any initial condition.

Newton’s laws enable one to obtain such
equations for mechanical systems, from
which the future evolution of any system
can be calculated. Scientists in other fields
formulated similar laws to obtain such “dif-
ferential equations” — Kirchoff’s laws for
electrical circuits, Maxwell’s equations for
electromagnetic fields, Schrödinger’s equa-
tion in quantum mechanics, etc.

Given a dynamical system, we can thus
obtain differential equations, and solving
the equations we obtain the trajectory in
the state space. Having achieved this abil-
ity, man turned to understanding mathe-
matically the quantitative and qualitative
changes in motion in terms of the quanti-
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tative and qualitative changes in the char-
acter of the trajectories.

3. Different types of trajectories

Since our objective here is to understand
the qualitative changes, we need to under-
stand what is meant by fundamentally dif-
ferent types of dynamical behaviour, i.e.,
different types of trajectories in the state
space. For this, let us consider the tra-
jectory of the simple pendulum without air
friction. If we move the bob to some an-
gle and release it, the initial condition will
be

�
= some value and

��
��� . The subse-

quent oscillation of the pendulum will make�
and

��
vary periodically between a positive

value and a negative value. Moreover, when�
is zero,

��
is non-zero (bottom position) and

vice versa. This implies that the trajectory
in the state-space will be a closed orbit as
shown in Fig. 1.
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Figure 1: The state-space trajectory of a
simple pendulum.

If we consider air friction, the oscillation
will slowly die down and the bob will finally
settle in the vertically-downward position.
In the state space this “damped oscillation”
is represented by an inward spiralling mo-
tion (Fig. 2). If the friction is too high (for
example, if the pendulum is moving in a vis-
cous fluid), there will be no oscillation and
the bob will move straight towards the ver-
tical position. In the state space we will see

a point moving to an equilibrium position
without any spiralling motion.
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Figure 2: The state-space trajectory of a
simple pendulum with friction.

Thus we see examples of three simple
but different kinds of motion in the state
space. Simple, because the evolutions in
these cases are guided by linear differential
equations. Where the differential equations
are nonlinear (a vast majority of dynamical
systems found in nature) more complicated
situations may arise.

For example, consider any regular rhyth-
mic motion found in nature. Our heart
rhythm is a good example, and a little re-
flection will convince you that there are
many such “oscillators” in nature, includ-
ing the human body. Their trajectory in the
state space is also a closed loop, but with
one major difference with that of the fric-
tionless simple pendulum. In the case of a
pendulum, if you move the bob to a larger
angle before releasing it (a different initial
condition), the state-point moves in a differ-
ent closed loop with a larger diameter. This
means, if you perturb the state the system
settles into a different trajectory. But the
human heart cannot afford to do that. You
may be startled by the sudden burst of a
cracker — setting the heart into an acceler-
ated pace — but after some time the rhythm
comes back to its original one, the original
closed loop in the state space. Any pertur-
bation from this loop eventually dies down
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Figure 3: A few fundamentally different types of orbits.

x 1

x
2

x 1
St

at
e 

V
ar

ia
bl

e

t

(a)
The time plot (left) and the state space trajectory (right) for a period-1 attractor.
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(b)
The time plot (left) and the state space trajectory (right) for a period-2 attractor.
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(c)
The time plot (left) and the state space trajectory (right) for a quasiperiodic attractor.
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t (d)
The time plot (left) and the state space trajectory (right) for a chaotic attractor.
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and the state is attracted to a particular or-
bit. Such stable closed-loop orbits, there-
fore, are called “attractors.” Quite diverse
things — starting from the oscillator that
sets the “clock” inside a computer to the
return of Olive-Ridley turtles to the Orissa
beach at a specific time of the year — are
examples such periodic attractors.

In some cases the periodicity may be
more than one. If a system comes back
to the same state after two oscillation-
cycles, it is called a period-2 trajectory (See
Fig. 3b). Note that a period-1 orbit as
in Fig. 3a is qualitatively different from a
period-2 orbit as in Fig. 3b. To visualize it,
consider a rubber-band of the shape like in
Fig. 3a. Can you transform it into a shape
like in Fig. 3b by quantitatively pulling or
pushing any part of it? You cannot. In or-
der to transform one to the other, you have
to fold it once. In that sense these two fig-
ures are not “topologically equivalent.”

In the same way, there may be trajecto-
ries of higher periodicities, each of which is
qualitatively different in the above sense.

There can be another type of qualita-
tively different trajectory. The orbit of
moon around earth is periodic, and that
of the earth around the sun is also peri-
odic. But what is the trajectory of the moon
around the sun? It will be a combination of
two periodicities. Such orbits in the state
space are called “quasiperiodic” orbits (See
Fig. 3c).

And if a system’s trajectory is bounded
but has no periodicity, then it is called
chaos1. A representative example of such
an orbit is shown in Fig. 3d.

All these attractors of different periodic-
ities, and the one without any periodicity,

1The term chaos is just a scientific term implying a
specific type of orbit, a specific type of dynamical be-
haviour (bounded, aperiodic trajectory with sensitive
dependence on initial condition). It has nothing to do
with the common meaning of the word in English lan-
guage.

represent fundamentally different types of
dynamical behaviour.

Therefore, the point of our investigation
boils down to the question: What is the
mechanism of the transition from one type
of trajectory to another?

4. Poincaré section

In attacking this problem, scientists rou-
tinely make use of an important tech-
nique introduced by the famous mathe-
matician Henri Poincaré about a hundred
years back. Imagine that you have placed a
plane in the state space such that the tra-
jectory intersects it in every cycle (Fig. 4).
Now imagine that you are observing only
the points in that plane (called the Poincaré
section) where the trajectory pierces it from
one side, ignoring what happens elsewhere
in the state space. You will see a succes-
sion of points — a point mapping to another
point, that point mapping to another point,
so on and so forth.

time orbit
Continuous−

section

y

z

x

Poincare

Figure 4: Poincaré section.

Notice that what is seen on the Poincaré
section preserves the fundamental charac-
ter of the original orbit. If the original or-
bit was period-1, we’ll see only one point on
the Poincaré section; if it is period-2 we’ll
see two points; if it is period- � we’ll see �

points. And if the original orbit does not
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Figure 5: The bifurcation diagram for the system ������� ���	� ��
�� ��� � ����� ������� � ��� with the
parameter � varied over the range 1 to 2.12.

have any periodicity, that is, if it is chaotic,
then we’ll see an infinity of points on the
Poincaré section.

This allows us to pinpoint the event where
a fundamental change in the character of
an orbit occurs. Suppose we are varying a
parameter of a system causing the orbit to
change. Take one value of the parameter,
let the dynamics settle into a stable orbit,
and then plot along the � -axis one coordi-
nate of about 100 points on the Poincaré
section. Then take the next value of the
parameter and repeat the same procedure.
Thus we obtain a plot with the parameter
value in the � -axis and the discretely ob-
served value of the state variable in the � -
axis. One such plot, called the bifurcation
diagram, is shown in Fig. 5.

This graph tells a lot of story. For the pa-
rameter values where the trajectory is peri-
odic, all the 100 points will fall on the same
location, and we’ll see just one point. Where
the orbit is period-2, 50 points will fall in
one position while the other 50 will fall at
a different location. We will thus see two
points for that parameter value. When the

system becomes chaotic, all the 100 points
will fall at different locations (because the
system then has no periodicity) and we see
a smudge of dots. The graph clearly shows
the character of the orbit for every param-
eter value. It would also clearly show the
points where a qualitative change in the or-
bit occurred. In Fig. 5 we have marked
the ranges of parameter values where the
changes can be said to be quantitative, and
the points where qualitative changes occur.

The qualitative changes in a system’s dy-
namical behaviour are called bifurcations.

5. Bifurcation

So far so good. We have identified the points
where the qualitative changes occur. Now
the question is: How do they occur?

It is obvious that so long as a particu-
lar orbit is stable, only quantitative changes
can occur in response to change of a pa-
rameter. Only when it becomes unstable, it
can be replaced by a qualitatively different
stable orbit.

In any physical system there is a constant
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interplay of two opposing tendencies — one
trying to maintain stability and another try-
ing to destabilize it. What these forces are
depends on the particular system under
consideration. In an electrical circuit, the
exact nature of these forces will not be the
same as that in a biological system. But
in every system there is a contradiction be-
tween two opposing forces, and the stabil-
ity of a particular dynamical behaviour de-
pends on which tendency becomes domi-
nant. The variation of a parameter changes
the balance of forces, leading first to quan-
titative change, and when the contradiction
reaches a nodal point, the earlier orbit loses
stability making way for a new trajectory.
It is then that we say a bifurcation has oc-
curred.

There are mathematical indicators of the
balance of forces. In order to visualize it,
let us first understand the dynamics on the
Poincaré surface, where the � th point maps
to the � � ����� th point as

� � ����� � � ����� � � a function of � � � � � � �
In general, the starting point � ��� � ��� � and
the point where it lands � ������� � ������� � are dif-
ferent. But there will be some special points
where � � ����� � � ��� � � � � � � � � � � , which means
that if the initial condition is at that point,
it will forever remain there. Such points are
called fixed points.

If the initial condition is somewhere else,
the further iterates may converge on to the
fixed point; in that case it is stable. If it di-
verges away from the fixed point, then it is
unstable. So long as a fixed point is sta-
ble, the orbit is stable, and we can have
only quantitative changes. And qualitative
change will be associated with the loss of
stability of a fixed point.

So let us take a closer look at the fixed
point, given by � � ����� � � ����� � � � � � � � � � , whose
stability is under inspection. In the neigh-
bourhood of the fixed point, the function

PSfrag replacements

���	��
���	���� ����� 
� ����� �

Figure 6: A mapping in the discrete state
space.

can be approximated by the linear form

������� � � ��� ��� �����
������� � � ��� � � ��� �

The point � � � � � � � represents a vector (imag-
ine a vector joining the origin and this
point), so does � ��������� ����� � � (see Fig. 6). In
general, the source vector and the result-
ing vector lie in different directions. But
there are two special directions in a two-
dimensional discrete state space such that
if � � � � � � � happens to be in that direction,
the vector � ����� � � ������� � also lies in the same
direction. Any vector along such special di-
rections are called eigenvectors. And the
factor by which an eigenvector elongates or
shortens is called the eigenvalue. These can
be determined from the equations or from
experimental data obtained from practical
systems.

Figure 7: An attracting fixed point: eigen-
values real, ����� � � � 
 � � .

Now suppose a system has both the

Breakthrough, Vol.10, No.1, April 2003 7



From the Breakthrough archives

eigenvalues less than one. If an initial con-
dition is on an eigenvector, in the next iter-
ate it will land closer to the origin (because
the vector is multiplied by a number less
than one). In subsequent iterates it will
move closer and closer (Fig. 7). If an ini-
tial condition does not lie on an eigenvector,
its coordinate can be decomposed into two
components along the eigenvectors. These
components will become smaller in every
step, and the point will move closer to the
fixed point. This implies that the fixed point
will be stable.

If both the eigenvalues are greater than
one, Fig. 8 shows that the fixed point will
be unstable.

Figure 8: A repeller: eigenvalues real,
� � � � 
�� � .

If one eigenvalue is greater than one and
the other less than one, then the system is
stable along one eigenvector and unstable
along the other. Such a fixed point is called
a saddle. (Fig. 9).

Figure 9: A regular saddle: eigenvalues
real, � ��� � � � , � 
 � � .

If an eigenvalue is negative, then the vec-
tor is multiplied by a negative number. This
means that the point flips and lands on the

other side of the eigenvector. One such ex-
ample, the flip saddle, is shown in Fig. 10.

Figure 10: A flip saddle: eigenvalues real,
����� � � � , � 
 � � � .

Eigenvalues can also be complex num-
bers. In that case if the magnitude of the
eigenvalue is less than one, then the orbit
moves in an inward spiral and converges
on the fixed point. If the modulus is greater
than one, it travels in an outward spiral and
diverges away from the fixed point (Fig. 11).

(a) (b)

Figure 11: (a) A spiral attractor: eigenval-
ues complex, � � � � ��� � 
 � � � . (b) A spiral re-
peller: eigenvalues complex, � � ��� ��� � 
 � � � .

What do all this lead to? What is the con-
dition for stability of a fixed point? Sim-
ple. If the magnitudes of all the eigenvalues
are less than unity, the fixed point is stable.
Else it is unstable.

In how many possible ways can a fixed
point lose stability? Exactly three. First,
a negative eigenvalue can become less than
� � ; second, a positive eigenvalue can be-
come greater than � � ; and third, the modu-
lus of a pair of complex conjugate eigenval-
ues can become greater than one. These are
the three possible ways a qualitative change
can occur — three possible bifurcations.
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The first one is called period-doubling bi-
furcation (like Fig. 3a changing to Fig. 3b),
examples of which are also seen in Fig. 5.
The second one is called saddle-node bifur-
cation, through which a new orbit, a new
dynamical behavour, can come into being
or go out of being. The third one is called
the Hopf bifurcation, through which a pe-
riodic orbit (Fig. 3(a)) can change into a
quasiperiodic orbit (Fig. 3(c)). These are the
three main mechanisms leading to quali-
tative change in a system’s dynamical be-
haviour.

Scientists studying the diseases of the
heart have found that the stable peri-
odic orbit generally loses stability through
period-doubling bifurcation. People have
observed the dynamics on the Poincaré sec-
tion, obtained the eigenvalues, and have
confirmed that one eigenvalue does become
� � at the point where instability sets in,
leading to a qualitative change in the behav-
ior. This knowledge is now helping scien-
tists devise diagnostic techniques and pre-
ventive measures.

In very large electric power systems some-
times an instability sets in leading to a
voltage collapse. This happens not only
in weakly protected power systems of our
country, but also in relatively stronger sys-
tems of advanced countries. Scientists
probing this sudden qualitative change in
the system’s behaviour have found out that
a type of Hopf bifurcation is the root cause
of the phenomenon.

Engineers designing jet engines were baf-
fled by a peculiar phenomenon of sudden
stalling of the engine under certain oper-
ating conditions. As a parameter, say the
air intake or fuel injection, is continuously
varied, a quantitative change in the operat-
ing condition takes place. But sometimes,
at a nodal point, the operating condition
suddenly undergoes a qualitative change.
One can easily imagine the danger of such

a thing happening mid-air, and so it has re-
ceived a considerable amount of research
attention. It has been found out that a bi-
furcation phenomenon is the culprit in this
case also.

Ecologists studying why populations of
certain species fluctuate in cyclic rhythms
have mathematically modeled the complex
struggle of the species with its environment,
and found that this is precisely what is to be
expected, as per the bifurcation theory.

Even mundane events — like the flow of
drops of water from a leaky faucet — exhibit
bifurcation phenomena. Suppose, you have
opened a tap a little bit, such that drops of
water fall down: tick tick tick ����� in equal
intervals. In scientific perlance, it will be
called a period-1 orbit. Now increase the
flow a little bit, and it becomes period-2. If
you have means of controlling the flow pre-
cisely, you will see the same kind of bifurca-
tion structure as seen in Fig. 5, finally lead-
ing to chaos — erratic and aperiodic fall of
the drops. Again, scientists have computed
the eigenvalues from experimental obser-
vations and have found that here also the
qualitative changes in the orbit follow the
mathematical conditions outlined above.

Internal and external

The eigenvalues of a system can indicate
the balance of forces that are internal to the
system. Naturally, they can identify only
those bifurcations that are caused by in-
ternal contradictions. Sometimes, some ex-
traneous causes can abruptly destabilize a
system, causing a bifurcation.

Take a simple example from a physical
system (Fig. 12). Suppose there is a mass
attached to a wall by means of a spring. If
you apply a force to the mass periodically,
it will oscillate in the horizontal direction.
You can easily write down the equations
and can show that the system will be sta-
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Figure 12: The “impact oscillator.”

ble. But now suppose there is another wall
at some distance, so that if the amplitude of
oscillation crosses a critical value the mass
hits the wall. This extraneous cause desta-
bilizes the periodic orbit and causes a bi-
furcation.

Similar events occur in all systems where
the normal balance of forces undergo some
abrupt change when some condition is sat-
isfied. Examples include systems involving
some switching action, relays, valve open-
ing and closing etc., and systems whose en-
vironments exert some influence under spe-
cific conditions.

For such systems it has been shown that
when the discrete-time representation is
obtained (by Poincaré section), one obtains
different functional forms of the map in dif-
ferent regions of the state space. There are
borderlines that divide these regions. Spe-
cific types of bifurcations can occur when
a fixed point collides with one such border-
line, causing an abrupt change in the eigen-
values. Such bifurcations are called “bor-
der collision bifurcations.” Mathematical
analysis of such bifurcations is helping sci-
entists understand the cause of many sud-
den changes that happen in natural and
engineering systems, including the excita-
tion and inhibition of the neurons of the
brain, abnormal conditions of the human
heart and traffic congestion in highways,
even internet traffic in computer networks.

Conclusion

From the above discussion we see that
the philosophical conclusion regarding the
process of change in material phenomena,
reached a century and half ago, now stands
on solid scientific ground. Rigorous ex-
perimental tests have been carried out to
investigate the transition from quantitative
change to qualitative change in natural pro-
cesses, and mathematical theories to ex-
plain these have been developed. Armed
with this knowldege, scientists are now in
a position to exercise a greater control over
the process of change in natural as well as
engineering systems. �
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