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I
N THE olden times, man’s view of the

universe was quite different from ours.

People believed that the Earth was at the

centre of the universe, and all the heavenly

bodies revolved round it. That is of course

what we observe: we see the sun, the moon

and the stars going round the Earth. So

the ancient peoples’ cosmology was built on

that observation.

They really did quite an impressive bit of

hard observation—as much as is possible

with naked eyes. For example, the ancient

Greeks knew that the motion of the planets

was different from that of the stars. While

the stars appeared to go around the Earth,

their positions with respect to one another

did not change. But the planets’ positions

changed from night to night, and they ap-

peared to wander in the starry background.

Aristarchus and other astronomers made

very detailed observation on the planets,

and noticed the peculiarity of their motion.

Take, for example, the motion of the

bright red planet Mars. If you keep track of

its position from night to night, you would

see that for some time it appears to move

in one direction with respect to the back-

ground stars. But then the motion slows

down, and finally stops. Then it turns back

and moves in the opposite direction. After

some time it stops again and continues its

forward motion. The planet continues this

wobbling motion, now going forward now
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Figure 1: The observed motion of Mars in

the starry background

turning back, but on an average appearing

to go round the Earth (Fig. 1).

This peculiar motion was noticed by

Aristarchus and other ancient Greek as-

tronomers. This puzzled them. While sim-

ple observation suggested a geocentric cos-

mological viewpoint, something more had to

be said regarding the motion of the planets

than simply saying that they go around the

Earth.

Repeated observation that certain occur-

rences came in the same succession had

already germinated the rudimentary ideas

of causal relation. Subjective reasoning of

possible causal relation drove this primitive

knowledge, through extrapolation, into as-

trological reasoning and belief in supernat-

ural intervention.

Another group proposed that while the

sun, the moon, and the stars move in cir-

cles around the Earth, the planets do not

move in circles. There are smaller circles

over bigger circles—which came to be called

epicycles—so that there are times when

planets appear to move in the opposite di-

rection (see Fig. 2). It is not known who

originated this idea; but a very clear view

appears in the writings of Ptolemy. That is
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why this picture of the universe is called the

Ptolemaic cosmology.
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Figure 2: The Ptolemaic conception of plan-

etary motion in epicycles.

Astronomers went on to make more and

more accurate observations on the motion

of the planets. Soon the picture appeared to

be inadequate to account for the actual mo-

tion. Then it was proposed that there was

not just one epicycle; there were epicycles

over epicycles. How many? No one knew.

But the picture was getting messier as the

volume of observations increased.

We have to jump from that point to a time

a few centuries afterwards, because in the

meantime nothing happened in Europe in

the area of science. It was the middle age.

The Ptolemaic viewpoint had become an in-

tegral part in the Christian dogma, and it

was a blasphemy to question it.

The gloom of darkness began to fade at

the advent of the renaissance in the four-

teenth century. And Copernicus stepped

into the scene. He proposed that a possi-

ble solution to the puzzling motion of the

planets is to assume that the sun is at the

centre of the solar system, and the Earth

as well as the planets are revolving round

it. He showed that the observations of

a revolving planet from a revolving Earth

would be similar to what is actually ob-

served. Note, that it was just an alter-

native hypothesis, aimed at explaining the

same observations. Only after it was sup-

ported by Bruno and Galileo that it earned

some scientific respectability. Johannes

Kepler improved upon Copernicus’ picture

by showing, using Tycho Brahe’s observa-

tional data, that the planets do not move

in circles. Their trajectories actually trace

out elliptical paths, with the sun in one of

the two foci. With this vital correction, the

Copernican model could account for the ap-

parently peculiar observed motions. The

Ptolemaic picture was then jettisoned.

Much later, in the eighteenth century,

the French mathematician and physicist

Joseph Fourier (1768-1830), made an im-

portant discovery. If you imagine observa-

tions being made on any physical system as

it goes through its own motion, you would

obtain a waveform—that indicates how its

position varies with time. In general, the

observed variable need not be only position:

it could also be the velocity (or momentum)

of a moving body. In a waveform, the y-axis

represents such a dynamical variable, and

the x axis represents time.

Suppose a pendulum has a very long

chord, and the bob is moved by a small an-

gle. In that case, as the bob undergoes a to-

and-fro motion, it traverses a small arc of a

circle. Such an oscillation is called a simple

harmonic motion. If you now plot θ (the an-

gle of the bob from the vertical line) against

time, you would get a sinusoidal waveform,

that is, θ is proportional to sin t.

In a physical system, the graphical rep-

resentation of motion can be such a sim-

ple wave-like up and down variation. It

can also represent a complicated motion.

Fourier was considering the problem of rep-

resenting such waveforms. He showed that

any arbitrary periodic waveform can be ex-

pressed as a summation of sinusoidal func-

tions, each with a frequency that is an inte-
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Figure 3: The successive approximations of

the square wave by the Fourier series.

gral multiple of a “fundamental frequency”.

As an example, consider a physical sys-

tem whose variable changes as shown in

Fig. 3(a). For three seconds the variable has

the value +1, and then jumps to the value

−1. After six seconds it jumps back to +1.

This is called a square-wave.

Now consider the trigonometric series

sin ω0t +
1

3
sin 3ω0t +

1

5
sin 5ω0t +

1

7
sin 7ω0t + · · ·

where 2π/ω0 is the period. The waveforms

in 3(b) show pictorial views of this series;

the first one shows only the first term, the

second one shows the graph of the first two

terms, and so forth.

It is clear that when a larger number of

terms are considered, the trigonometric se-

ries approaches the square wave. Fourier

showed that any periodic waveform can be

represented as an infinite sum of such sine

and cosine terms. Fourier also showed how

the coefficients of the terms in the series

can be calculated for any given periodic

waveform. For those who are exposed to

trigonometry and complex numbers, some

mathematical details of the Fourier series

are given in Box-1. Other readers may skip

the box and may go ahead.

The observed motion of a planet in the

spherical coordinate system of the sky as

seen from the Earth is also a waveform.

True, a very complicated one, but a peri-

odic waveform nevertheless. And, following

Fourier, it can be said that the motion of the

planets can be represented by a summation

of sinusoidal waveforms.

It so happens that sinusoidal waveforms

can also be represented as simple circular

rotations. Imagine something rotating in

circlular motion about a point at constant

angular speed. If the x- or y-coordinate of

that body is plotted against time, you would

get a sinusoidal waveform (see Fig.4), as the

values of these coordinates vary as simple

harmonic motion.

y

x

y

Time

Figure 4: Simple circular motion is equiva-

lent to a sinusoidal waveform.

Thus, the “summation of sinusoids” rep-

resentation turns out to be strikingly simi-

lar to the Ptolemaic picture (see the vector-

rotation picture of the Fourier series in Box-

1). What turns out is that the observed

motion of the planets can be represented

Breakthrough, Vol.13, No.1, January 2008 3
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Box-1: The Fourier Series

In general, the Fourier series representation of any periodic waveform is expressed as

x(t) = a0 + a1 cos ω0t + a2 cos 2ω0t + a3 cos 3ω0t + · · · + b1 sin ω0t + b2 sin 2ω0t + b3 sin 3ω0t + · · ·

= a0 +

∞
∑

n=1

an cos nω0t +

∞
∑

n=1

bn sin nω0t

where −∞ < t < ∞.

There is another way of representing this series—in terms of exponential terms:

f(t) = c0 +
(

c1e
iωt + c2e

2iωt + c3e
3iωt + · · ·

)

+
(

c−1e
−iωt + c−2e

−2iωt + c−3e
−3iωt

· · ·

)

=

∞
∑

n=−∞

cne
inωt

This is the exponential form of the Fourier series. Here the coefficients cn are complex numbers.

To understand this series, note that a term cneinωt represents a rotating vector (except c0 which is

stationary). Thus the summation of the rotating vectors can be pictorially represented as shown

in Fig.(a) below.
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Vectors of the form cneinωt rotate in a counter-clockwise direction, and those of the form c−ne−inωt

rotate in clockwise direction. The imaginary parts cancel, giving the real value (see Fig.(b) above).

Thus complex conjugate components cn and c−n must occur. The function is obtained as an

infinite summation of spinning vectors rotating at speeds that are integral multiples of the fun-

damental frequency ω.

by considering the Earth as the centre of

the solar system, and the planets moving

in epicycles. You can go as close as de-

sired to the actual observed motion by tak-

ing into account the necessary number of

epicycles; and to get an exact matching you

would have to consider an infinite num-

ber of them. Thus, the Copernican picture

and the Ptolemaic picture (with an infinite

number of epicycles) turns out to be math-

ematically equivalent. Had the discovery

of Fourier come before Copernicus, what

would have been our understanding of the

solar system? We would have said, with all

confidence, that the Earth is really placed

at the centre, that the planets go around it

in epicycles, and that there are really an in-

finite number of epicycles. We would have
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built our theory around this picture, en-

abling us to predict the position of the plan-

ets with great accuracy. Not a single obser-

vation on the motion of the planets would

have contradicted this theory.

You would say that we do know that

Copernicus was right. Do we really? How?

Was it not a quirk of fate that out of

these two mathematically equivalent for-

mulations, Copernicus’ came first?

This brings us to the central question I

am trying to raise in this essay. When

two formulations are mathematically equiv-

alent, how to decide which one represents

physical reality?

We will come back to this question later.

First let us take a look at another such ex-

ample of mathematical equivalence.

Newton, Lagrange, Hamilton

As we know, the Copernican picture of the

solar system was enriched by Galileo and

Kepler. When we learned how the planets

move, the next obvious question was: Why?

Why do the planets move the way they do?

Newton (1643-1727) solved the problem

on the basis of two postulates:

1. Any two bodies attract each other with a

force proportional to their masses and in-

versely proportional to the square of the

distance between them.

2. A body’s motion is governed by the equa-

tion: Force = mass times acceleration.

Since velocity v is the rate of change of po-

sition x, and acceleration a is the rate of

change of velocity, acceleration of a body is

the double derivative of its position. Thus

the second postulate gives the equation

d2x

dt2
=

F

m

This is a differential equation, which can be

solved if the initial position and velocity of

the body are known. This allowed one to

calculate the future positions and velocities

of the body.

The causal chain became clear. Why do

bodies move? Because they are acted on by

forces. What creates the forces? The other

bodies around them. Why does Mars move?

Because it is acted on by the attraction of

the sun. Why does it go from ‘here’ to ‘there’

in the sky, and not somewhere else? Be-

cause its being ‘here’ implies its possessing

a specific position and velocity. These con-

stitute its initial condition. With this spe-

cific initial condition, and the specific force

acting on it, its motion is governed by the

above differential equation. That tells how

it will move in the future.

The success of this theory was spectac-

ular. Man became able to predict the mo-

tion of heavenly bodies with great accuracy.

The shroud of mystery around them was re-

moved. Not only the motion of planets, the

motion of the bodies on earth was also sub-

ject to the same laws, and could similarly

be predicted.

This line of reasoning gave birth to the

idea of causality as a pillar on which sci-

ence built its explanation of natural phe-

nomena. It came to be accepted that every-

thing happening in the natural world must

have a cause. It must be a natural cause

(as opposed to a supernatural one), which

is knowable. This confidence prompted sci-

entists to look for the cause of every nat-

ural phenomenon—not only in the field of

physics, but in all fields of human enquiry.

One important element in the idea of

causality is that the cause must precede the

effect in time. This was evidently built into

the Newtonian formalism: The initial condi-

tion is the cause of the motion of a body in

the future, and always precedes the effect.

An important improvement came in the

century following Newton. Scientists were

Breakthrough, Vol.13, No.1, January 2008 5
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facing some practical difficulties in apply-

ing Newton’s method to physical situations.

The motion of most bodies had to be rep-

resented in three dimensions, and hence

Newton’s laws had to be written in vector

form—which was cumbersome. The mo-

tions of most bodies are constrained, as a

pendulum’s motion is constrained to lie on

the surface of a sphere. The constraints ap-

ply some force on the body which also had

to be taken into account. With a large num-

ber of interacting elements in a system, the

force on a body also becomes difficult to

write down. Joseph Louis Lagrange (1736-

1813) showed that Newton’s laws can also

be stated in terms of the total kinetic energy

and the total potential energy (see Box-2),

which makes the actual job of writing down

the differential equations much simpler.

In the meantime people had noticed that

in many physical situations nature follows

some kind of minimization rule. For exam-

ple, if a wire is bent into a loop and dipped

into a soap solution, a film will form to

span the loop that will minimize the area

bounded by the wire. If a flexible wire is

held at two ends and rotated by the middle,

it would assume a shape that minimizes the

surface of revolution. Some scientists won-

dered, is there any such minimization rule

that is followed in dynamics?

A few years after Lagrange, the Irish

physicist William Rowan Hamilton (1805-

1865) showed that there indeed is such

a minimization rule. To understand this,

consider the motion of a planet like Mars

in the gravitational attraction of the sun.

Suppose it starts somewhere and moves to

some other point in a certain amount of

time (see Fig. 5). Now, you are considering

why it went from point 1 to point 2 by that

specific path and not by some other path.

Indeed, you can imagine innumerable pos-

sible routes from point 1 to point 2. For

each possible path you can calculate the

kinetic energy and the potential energy at

every moment of the path. Now, integrate

the kinetic energy minus the potential en-

ergy over time during the whole path. It was

found that the object (in this case, Mars)

takes that specific path for which this inte-

gral is a minimum. In the language of Feyn-

man, “the laws of Newton could be stated

not in the form F = ma, but in the form:

the average kinetic energy less the average

potential energy is as little as possible for

the path of an object going from one point

to another” (Feynman Lectures on Physics,

Vol.2, Chapter 19).

2at time t

Point 1
at time t 1

Path A

Pat
h 

B

Point 2

Path D
Path C

Figure 5: The path followed in moving from

point 1 to point 2, and other possible paths.

The integral of the kinetic energy minus

the potential energy is called the action, and

so this minimization rule came to be known

as the “least action principle”. Hamil-

ton demonstrated that it is mathematically

equivalent to Newton’s laws of motion, in

the sense that you get the same differen-

tial equations governing a particle’s mo-

tion no matter whether you start from New-

ton’s laws or from the least action princi-

ple. In fact, the derivation is so simple that

many physics teachers today prefer to de-

rive the Lagrange equations from the prin-

ciple of least action rather than from New-

ton’s laws. For a mathematically inclined

6 Breakthrough, Vol.13, No.1, January 2008



Breakthrough Archive

Box-2: The equivalent approaches in mechanics

Suppose there is a body of mass m, acted on by an external force F and a constraint

force F c. Then the Newton’s law would take the vectorial form

mr̈ = F
c
+ F

Note that the terms in boldface are vectors. If a system is composed of many such

bodies (like the sun-earth-moon system), then the equation of the jth mass point will

be

mj r̈j = F
c
j + Fj

And the whole system of equations will have to be solved. The problem was that Fj and

F
c
j were not easily quantifiable.

Lagrange showed that the same system of equations can be written in terms of the total

kinetic energy T and the total potential energy V . He introduced a new function L, now

called the Lagrangian function, which is the kinetic energy minus the potential energy,

that is, L = T −V . In terms of this Lagrangian function, the Newtonian equation can be

written as
d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi

= 0,

where the q’s denote the “generalized” coordinates which include the positions and mo-

menta of the bodies involved.

The principle of least action says that if the system moved from one point at time t1 to

another at time t2, the path in between would be the one for which the integral of the

Lagrangian function

S =

∫ t2

t1

L dt

is a minimum. Hamilton showed that one can derive the Lagrangian equation starting

from this premise. Thus, the Newton’s laws, Lagrange’s equation, and the principle of

least action are mathematically equivalent.

reader, a brief account of the Newtonian,

Lagrangian, and least-action approach is

given in Box-2.

Now notice the catch. For any body in

motion, its initial condition as well as the

final condition are needed to decide in what

direction it should move in the next in-

stant. The path is determined by the start-

ing point as well as the destination. You

cannot evaluate the action integral unless

you already know the starting point and the

ending point of the path. Since the par-

ticle moves along that path for which the

action integral must be minimum, the par-

ticle must somehow “know” where its final

destination is even before it starts to move.

Let us again consider the question we

asked when discussing Newton’s laws: Why

does a particle move? A follower of the least

action principle would say: Because it has

to reach point 2 starting from point 1 in a

specific amount of time. Thus, the destina-
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tion becomes a cause of motion. The law of

causality obviously becomes meaningless.

The least action principle is thus found

to be of a teleological character 1. In his

textbook on mechanics (first Indian reprint,

Levant books, Kolkata, 2003), the famous

physicist Arnold Sommerfeld commented

that in its formulation not only teleologi-

cal but also theological beliefs played a role.

Maupertuis and Leibniz used this principle

with the assertion that it best expressed the

wisdom of the Creator.

But we have seen earlier that the laws

of Newton perfectly conformed to the con-

cept of causality. Now we find that the least

action principle does not. Yet, the two are

mathematically equivalent to each other!

And Physical Reality

Thus we see that it is possible to have math-

ematically equivalent formulations that give

completely different pictures of physical re-

ality. After all, mathematical formulations

have roots in human reasoning which in-

alienably subsume ideas and outlooks—

objective or subjective. If the least action

principle had been discovered before New-

ton, we would still be able to calculate the

motion of objects. Not a single observation

would have contradicted the theory. But we

would have tried to build science without

the idea of causality. Science would have

been quite different from what we know.

Similarly, had the Ptolemaic picture been

perfected on the basis of Fourier’s theory

before Copernicus and Galileo, we would

have been able to explain all observations

on the motion of the planets, but Newton’s

discovery would have been impossible. Sci-

ence would have been completely different.

Now notice an important issue. If sci-

ence is based only on observations, and

1The word “teleological” means “shaped by a pur-

pose” or “directed toward an end.”

the purpose of science is solely to explain

the observations, the Ptolemaic picture is

perfectly all right. But the moment you

transcend that limited objective and set

about to find what is the physical reality,

the limitation of the Ptolemaic theory is re-

vealed. If you imagine yourself placed on

another planet and making observations on

the motion of the other planets (including

the Earth), you would still be able to ex-

plain the observations on the basis of a

Ptolemy-like picture. That planet would

then be placed at the centre of the solar sys-

tem; other planets would move on epicycles

that are completely different from those for

Earth-based observations. That is, for every

different observation from different points

in the solar system, you describe a differ-

ent reality. The picture of physical reality

becomes different for different observers. If

you want to construct a picture of physi-

cal reality that satisfies all observations but

in itself is independent of the observer, you

have no way but to count on the Coperni-

can picture. That is why, in modern un-

derstanding the Copernican view of the so-

lar system with sun at the centre is correct.

This gives us the important lesson that the

objective of science should be to construct a

picture of physical reality that is consistent

with the observations.

In contrast, there is a philosophical posi-

tion called positivism, which concerns itself

only with observations and observables. It

argues that the objective of science is only

to predict and explain the observations.

According to this outlook, the source of

knowledge is sense-perception, and sense-

perception belongs to the objective. Many

scientists in the 1920’s and 1930’s were in-

fluenced by this idea, and took positivism

as the philosophical guideline for their sci-

ence. Especially when the theory of quan-

tum mechanics was taking shape, scien-

8 Breakthrough, Vol.13, No.1, January 2008
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tists like Niels Bohr and Werner Heisenberg

argued in favour of it and built a mathe-

matical formalism with which you can pre-

dict what will be the observation in a spe-

cific situation. This viewpoint came to be

called the “Copenhagen interpretation”. It

has been very successful, as it has suc-

ceeded in explaining all observations and

not a single experiment has contradicted

the predictions of quantum mechanics. But

that structure of quantum mechanics never

talks about what is the physical reality of

the microworld.

Many leading scientists of that time, in-

cluding Albert Einstein, Max Planck, and

Erwin Schrödinger did not agree with this

viewpoint and argued that the purpose of

a theory should be to grasp the nature of

physical reality. If we can understand it,

explanations of observations will naturally

follow from that. But if the objective of sci-

ence becomes only to produce a “cookbook”

— a collection of mathematical techniques

with which observations coming out of ex-

periments can be predicted, the whole pur-

pose of science is defeated.

Many people feel that the debate—led by

Bohr in one side and Einstein in the other—

had been settled in favour of the Copen-

hagen viewpoint. That is now treated as the

mainstream quantum mechanics, which is

taught today in the physics courses. Stu-

dents learn only the technique, and are

generally happy that “it works”.

Yet, there is a group of scientists who feel

that there must be a mathematically equiv-

alent formalism which will reveal the phys-

ical reality of the microworld. True, that

formalism has not been found yet, and the

search is still on. The history of Ptolemy

and Copernicus tells us that this may not

be a futile exercise in the long run. We have

to realize that knowledge flows not from ob-

servation, but from conceptual coordina-

tion and integration of the observed facts

into a picture of physical reality. Knowl-

edge has roots in reality, but is gift of hu-

man brain.

There is another aspect of mathematics

that demand caution. The whole of math-

ematics deals with abstraction from reality.

When in school we learn 2 + 3 = 5, that it-

self is an abstraction. In reality there are

only number of objects: two mangoes plus

three mangoes equals five mangoes. When

we write only the numbers without refer-

ring to whose numbers they are, we are al-

ready abstracting from reality. When we

write x+ y = z we are generalizing the num-

bers, and are further abstracting from real-

ity. There is no x in nature, yet x is related

to physical reality: x represents a number,

which could represent the number of some-

thing in nature. When a mathematician

goes into further levels of abstraction and

works with such abstract mathematical en-

tities, playing with their own set of rules,

there is always the danger of losing track of

the link with physical reality. The more the

abstraction, the more the danger of straying

out into fiction. Many times in the history

of mathematics it so happened that a math-

ematical concept that initially looked like

pure abstraction turned out to be of great

importance in understanding physical real-

ity. Take the history of the imaginary num-

ber or tensor calculus as example. Even if it

is not immediately apparent what physical

reality a specific mathematical idea repre-

sents, one should have the confidence that

no mathematical concept can be devoid of

any link with physical reality.

Next, causality is a heuristic principle on

which all of science is built. When a scien-

tist sees a phenomenon, he looks for expla-

nation, and asks ‘Why’? Before Darwin sci-

entists observed the multitude of life forms

on Earth. The idea that species change had
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also beed hatched. Darwin asked: Why?

Why do species change? And he proposed a

causal chain that leads to speciation. That

is how science is done. If a scientist does

not have the confidence that a specific phe-

nomenon has a cause, why should he or

she try to look for the cause?

The instance of the least action principle

teaches us that a specific theory, however

successful it may be in explaining obser-

vations, cannot refute the idea of causal-

ity. There are far too many developments

in science that point to the existence of

a causal connection in every phenomenon.

Today we see the tendency in some scien-

tists to pronounce the priciple of causal-

ity dead, just because a mathematical for-

malism seemed to violate causality. When

one comes across a theory that appears to

violate causality, one should look for its

mathematical equivalence—the way scien-

tists continued to have confidence in the

operation of causality on the basis on New-

ton’s laws in spite of the least action princi-

ple’s pointing otherwise. 2
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